
Subtyping Context-Free Session Types

Gil Silva , Andreia Mordido , and Vasco T. Vasconcelos

LASIGE, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal

Keywords: Session types · Subtyping · Simulation · Simple grammars

Session types allow the specification of structured communication protocols on
bidirectional, heterogeneously typed channels. Typically, these specifications in-
clude the type, direction and order of messages, as well as branching points
where participants can decide how communication should proceed.

Support for session types in a programming language provides for safer con-
current programming by allowing its typechecker to validate the behavior of
programs against the protocols specified by these types, ensuring session fidelity
(communication proceeds as specified), privacy (channels are only known to par-
ticipating processes), communication safety (no mismatch in direction or type
of messages) and, in some variants, deadlock freedom.

Until recently, session types were bound by tail recursion and therefore re-
stricted to the specification of protocols described by (the union of ω-regular and)
regular languages. This class excludes many protocols of practical interest, with
the quintessential example being the serialization of tree-structured data on a
single channel. Context-free session types, proposed by Thiemann and Vasconce-
los [5], liberate types from tail recursion by introducing a sequential composition
operator with a monoidal structure and a left and right identity in type Skip,
which represents no action. As their name hints, context-free session types can
specify protocols corresponding to (simple deterministic) context-free languages
and are thus considerably more expressive than their regular counterparts.

In their quest for safe concurrency, session type systems can become too
rigid for practical use. Subtyping is meant to alleviate this tension between
safety and flexibility. It is often justified by appealing to Liskov’s principle of
safe substitution: a type T can be considered a subtype of U if a value of type T
can be used in place of a value of type U in whatever context, without violating
the desirable properties of the type system in question.

What does it mean for a session type to be a subtype of another? One pos-
sible answer, based on the safe substitution of channels, can be found in Gay
and Hole’s seminal work on subtyping for regular session types [3]. Succinctly,
their notion of subtyping allows increased flexibility in the interactions between
session participants, namely on the type of messages they exchange and on the
choices each participant has available at a branching points. A practical benefit
of this flexibility is that it promotes modular development : the behaviour of one
participant (e.g., a server) may be refined, while that of the other (e.g., a client)
is kept intact.

http://orcid.org/0009-0007-7051-6116
http://orcid.org/0000-0002-1547-0692
http://orcid.org/0000-0002-9539-8861

Actas do décimo quarto Simpósio de Informática (INForum 2023)

While the algorithmic properties of subtyping for regular session types are by
now well known, the same cannot be said for their context-free counterparts. The
main challenges in this respect are the monoidal and distributive properties they
exhibit, along with their equirecursive interpretation. A previous investigation [4]
into this topic has shown this problem to be undecidable – the usual, unfortunate
price to pay for expressive power.

Despite these challenges, we present a semantic approach to subtyping for
context-free session types, supported by a novel kind of observational preorder
we call XYZW-simulation, which generalizes the notion of XY-simulation pro-
posed by Aarts and Vaandrager [1]. This relation allows us to selectively com-
bine the requirements of simulation, reverse simulation and (a strong form of)
contra-simulation in order to handle the covariant and contravariant properties
of session type constructors to their full extent (previous work on this topic only
accounted for subtyping with syntactically equal message types).

XYZW-similarity generalizes bisimilarity, on which the notion of type equiv-
alence for context-free session types is usually based. Taking advantage of this
fact, we are able to derive a subtyping algorithm from an existing type equiv-
alence algorithm, that of Almeida et al. [2]. The resulting algorithm is sound
but, due to the undecidability of the subtyping problem, necessarily incomplete.
Since the original algorithm reduces the type equivalence problem to the bisim-
ilarity of simple grammars, our adaptation also results in an algorithm to check
the XYZW-similarity of simple grammars.

We implemented our algorithm in the FreeST programming language com-
piler, which natively supports context-free session types. In order to evaluate
its performance, we ran it on a test suite comprised of 4000 subtyping pairs
randomly generated with the aid of the Quickcheck library for Haskell. We ob-
tained satisfactory performance, but observed 200 timeouts. To compare it with
the original algorithm, we ran both side-by-side on a suite of 288 FreeST pro-
grams without subtyping. We observed no significant difference in performance.
Together, these results suggest that our algorithm is viable for practical use.

References

1. Aarts, F., Vaandrager, F.: Learning I/O automata. In: CONCUR 2010 - Concur-
rency Theory. pp. 71–85. Springer Berlin Heidelberg, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15375-4 6

2. Almeida, B., Mordido, A., Vasconcelos, V.T.: Deciding the bisimilarity of context-
free session types. In: Tools and Algorithms for the Construction and Analysis of
Systems. pp. 39–56. Springer (2020). https://doi.org/10.1007/978-3-030-45237-7 3

3. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Informatica
42(2-3), 191–225 (2005). https://doi.org/10.1007/s00236-005-0177-z

4. Padovani, L.: Context-free session type inference. ACM Trans. Program. Lang. Syst.
41(2), 9:1–9:37 (2019). https://doi.org/10.1145/3229062

5. Thiemann, P., Vasconcelos, V.T.: Context-free session types. In: Proceedings of
the 21st ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, Nara, Japan, September 18-22, 2016. pp. 462–475. ACM (2016). https:
//doi.org/10.1145/2951913.2951926

360 Sessão: Ciência e Engenharia de Software (Artigo)

https://doi.org/10.1007/978-3-642-15375-4_6
https://doi.org/10.1007/978-3-642-15375-4_6
https://doi.org/10.1007/978-3-030-45237-7_3
https://doi.org/10.1007/978-3-030-45237-7_3
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1145/3229062
https://doi.org/10.1145/3229062
https://doi.org/10.1145/2951913.2951926
https://doi.org/10.1145/2951913.2951926
https://doi.org/10.1145/2951913.2951926
https://doi.org/10.1145/2951913.2951926

	Subtyping Context-Free Session Types

